Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 993449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386166

RESUMO

Major depressive disorder (MDD) is the psychiatric disorder with the highest prevalence in the world. Pharmacological antidepressant treatment (AD), such as selective serotonin reuptake inhibitors [SSRI, i.e., fluoxetine (Flx)] is the first line of treatment for MDD. Despite its efficacy, lack of AD response occurs in numerous patients characterizing Difficult-to-treat Depression. ElectroConvulsive Therapy (ECT) is a highly effective treatment inducing rapid improvement in depressive symptoms and high remission rates of ∼50-63% in patients with pharmaco-resistant depression. Nevertheless, the need to develop reliable treatment response predictors to guide personalized AD strategies and supplement clinical observation is becoming a pressing clinical objective. Here, we propose to establish a proteomic peripheral biomarkers signature of ECT response in an anxio/depressive animal model of non-response to AD. Using an emotionality score based on the analysis complementary behavioral tests of anxiety/depression (Elevated Plus Maze, Novelty Suppressed Feeding, Splash Test), we showed that a 4-week corticosterone treatment (35 µg/ml, Cort model) in C57BL/6JRj male mice induced an anxiety/depressive-like behavior. A 28-day chronic fluoxetine treatment (Flx, 18 mg/kg/day) reduced corticosterone-induced increase in emotional behavior. A 50% decrease in emotionality score threshold before and after Flx, was used to separate Flx-responding mice (Flx-R, n = 18), or Flx non-responder mice (Flx-NR, n = 7). Then, Flx-NR mice received seven sessions of electroconvulsive seizure (ECS, equivalent to ECT in humans) and blood was collected before and after ECS treatment. Chronic ECS normalized the elevated emotionality observed in Flx-NR mice. Then, proteins were extracted from peripheral blood mononuclear cells (PBMCs) and isolated for proteomic analysis using a high-resolution MS Orbitrap. Data are available via ProteomeXchange with identifier PXD037392. The proteomic analysis revealed a signature of 33 peripheral proteins associated with response to ECS (7 down and 26 upregulated). These proteins were previously associated with mental disorders and involved in regulating pathways which participate to the depressive disorder etiology.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28336491

RESUMO

Severity of lithium poisoning depends on the ingested dose, previous treatment duration and renal function. No animal study has investigated neurobehavioral differences in relation to the lithium poisoning pattern observed in humans, while differences in lithium pharmacokinetics have been reported in lithium-pretreated rats mimicking chronic poisonings with enhanced brain accumulation in rats with renal failure. Our objectives were: 1)-to investigate lithium-related effects in overdose on locomotor activity, anxiety-like behavior, spatial recognition memory and anhedonia in the rat; 2)-to model the relationships between lithium-induced effects on locomotion and plasma, erythrocyte, cerebrospinal fluid and brain concentrations previously obtained according to the poisoning pattern. Open-field, elevated plus-maze, Y-maze and sucrose consumption tests were used. In acutely lithium-poisoned rats, we observed horizontal (p<0.001) and vertical hypolocomotion (p<0.0001), increased anxiety-like behavior (p<0.05) and impaired memory (p<0.01) but no altered hedonic status. Horizontal (p<0.01) and vertical (p<0.001) hypolocomotion peaked more markedly 24h after lithium injection and was more prolonged in acute-on-chronically vs. acutely lithium-poisoned rats. Hypolocomotion in chronically lithium-poisoned rats with impaired renal function did not differ from acutely poisoned rats 24h after the last injection. Interestingly, hypolocomotion/concentration relationships best fitted a sigmoidal Emax model in acute poisoning and a linear regression model linked to brain lithium in acute-on-chronic poisoning. In conclusion, lithium overdose alters rat behavior and consistently induces hypolocomotion which is more marked and prolonged in repeatedly lithium-treated rats. Our data suggest that differences between poisoning patterns regarding lithium-induced hypolocomotion are better explained by the duration of lithium exposure than by its brain accumulation.


Assuntos
Anedonia/efeitos dos fármacos , Antidepressivos/intoxicação , Comportamento Animal/efeitos dos fármacos , Compostos de Lítio/intoxicação , Atividade Motora/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...